반응형

블록체인 가상화폐를 대표하는 비트코인은 채굴, 검증 등 모든 수학적 과정 안에 이 SHA-256이라는 알고리즘이 등장하는 것으로 보인다. 

 

사실 해시알고리즘까지 알아야하나? 싶긴 하지만 그래도 일단 코인수학&암호학 이라는 카테고리를 만든 김에 첫 번째 수학적 내용으로 적절해보이긴 해서 공부해보았다.

 

1. SHA-256?

SHA-256은 메시지, 파일 암호화 또는 무결성검증 등에 널리 사용되는 일방향 암호화 해싱 알고리즘이다. 

대상 데이터를 256-bit 길이의 hash값으로 변환하는 역할을 한다. 

해시 알고리즘의 가장 큰 특징은 암호화 대상 데이터(평문)의 값이 아주 조금만 달라져도 결과값(암호문)이 크게 달라지는 것이다.

 

한번 예시와 함께 살펴보자.

2. 예시 (python)

import hashlib

data1 = "helloWorld"
res1 = hashlib.sha256(data1.encode()).hexdigest()
data2 = "hellWorld"
res2 = hashlib.sha256(data2.encode()).hexdigest()

print("res1:", res1)
print("res2:", res2)

비슷한 두 data를 SHA-256으로 암호화했는데, 너무나도 다른 결과값이 출력되었다.

res1: 11d4ddc357e0822968dbfd226b6e1c2aac018d076a54da4f65e1dc8180684ac3
res2: 83c111ea0677450e0293e71274de14f832a2a0293192a8bff29fee2fb7a86ed4

이를 통해 hash함수의 특징인 일명 '눈사태 효과'를 확인할 수 있었다.

3. SHA-256의 특징

  • 우선 SHA-256은 블록체인에서 가장 많이 채택하여 사용되고 있다.
  • 단방향성: 평문을 암호화했을 때, 다시 평문으로 복호화할 수 없다. 평문은 임의의 길이의 메시지이며, 이를 암호화하면 256-bit의 축약된 메시지로 출력된다. 데이터의 수정/변경을 검사하는 데 사용할 수는 있지만 인증은 불가능하다. 인증을 위해서는 메시지 인증 코드(MAC)과 디지털 서명(전자서명)이 요구된다.
  • 안전성: 이전버전인 SHA-1의 경우, 해시 충돌이 발견된 사례가 있기 때문에, 이와 크게 다르지 않은 256의 경우에도 안전성이 완벽하다고 하기는 어려울 것이다. 하지만, 양자컴퓨터와 같은 초성능 컴퓨터가 발명되기 전까지는 뚫기 어려울 것으로 보고 있다.
  • 블록체인에서는 SHA-256의 취약점이 발견되는 일이 있다고 하더라도, 하드포크와 같은 알고리즘 개선 기법을 이용하면 이러한 문제를 해결할 수 있다.

4. SHA-256의 구조

사실 SHA-256의 구조라기보다는 해시함수 암호화 과정의 구조라고 할 수도 있을 것 같다.

1. 전처리

전처리 단계에서는, 메시지를 512bit 블록으로 처리하는 과정을 거친다. 우선 메시지는 메시지 길이를 나타내는 64비트 값으로 끝나도록 패딩되고, 최종적으로 길이가 512비트의 배수가 된다.

2. 초기 해시 값 구성

SHA-256은 초기 해시 값으로 시작하는데, 이 값은 8개의 32bit word로 구성되어있다. 

3. 메시지 스케줄링

각 512비트 메시지 블록은 64개의 32bit 워드로 확장된다. (진짜 '확장'임) 이렇게 메시지 스케줄 배열이 만들어지고, 초기 16개의 워드는 메시지 블록에서 직접 가져온 것이며, 나머지 48개는 특정 연산을 거쳐서 만들어진 것이다.

4. 압축함수 실행

초기 해시값과 메시지 스케줄 배열을 사용해서 SHA-256 알고리즘은 64라운드의 압축함수를 실행함(64라운드는 좀 많네..) 각 라운드에서는 주요 두 가지 연산을 실행하게 된다. 확장된 메시지와 라운드 상수를 포함하는 모듈라 덧셈, 그리고 논리 함수가 수행된다고 한다. 그 결과, 8개의 해시값이 업데이트 된다.

이 부분을 자세히 다뤄보고싶긴 하지만,,, 뭔가 해시함수에는 흥미가 안생긴달까... 나중에 좀 수학적으로 재밌는것들 위주로 깊게 파고들어가보겠다..!! ㅎ

5. 최종 해시값 생성

모든 메시지 블록이 처리되면, 마지막 블록의 압축 결과는 이전블록의 결과와 함쳐져 최종 해시값을 형성한다.최종 값은 8개의 32bit word로 구성되어, 총 256bit 크기의 해시 값을 결과로 얻게 되는 것이다.

 

이렇게 대략적으로 SHA-256해시에 대해 좀 알아보았다.

다음부터는 암호 프로토콜과 같은 내용이나, 공개키 암호 시스템 등에 대해서도 알아보도록 하자.

반응형

'web3 > web3 crypto' 카테고리의 다른 글

circom을 이용한 zkp 생성 및 검증하기  (0) 2025.01.09
반응형

지난편에 이어서 이번 포스팅에서는 비트코인의 거래(Transaction)에 대해 한번 공부해보도록 해야겠다.

 

등장하는 단어들이 다소 어려운 감이 없지않아 있기 때문에, 정말 하나하나 다 설명하면서 넘어가보도록 하겠다.

 

비트코인 백서: 2. 거래

우리는 전자 화폐(electronic coin)를 디지털 서명의 체인으로 정의한다.

 

비트코인에서 정의한 전자화폐(가상화폐)는 바로 '디지털 서명의 체인'이라는 방식인 것이다. 이게 무슨 말일까?

우선 그 전에, 디지털 서명을 전자서명과 헷갈릴 수 있을 것 같아 이 둘의 차이점을 짚으면서 개념을 확인해보자. 차이점이라기 보다는 범주의 차이? 정도이다. 전자서명 안에 디지털서명이 있다.

전자서명?

미 전자 상거래법에서는 전자 서명을 전자적 수단에 의해 생성,전송,전달,수신 또는 저장되는 서명의 역할로 계약을 위해 포함되거나 논리적으로 만들어진 기호, 또는 프로세스라고 정의하고 있음.

즉, 비밀번호, PIN, 이메일 인증등이 포함된다고 할 수 있음.

디지털서명?

해싱, 서명, 검증 이 세 가지 알고리즘으로 이루어진 전자서명의 일종이라고 볼 수 있음. 디지털서명에 대해 좀 더 자세히 다루고 싶긴 하지만, 거기까지 가면 불필요하게 내용이 깊어질 듯 하여 일단은 넘어가도록 하겠다.

어쨋든, 디지털 서명이 어떤 역할을 하는지 알아보자면,

  1. 무결성 보장: 거래 데이터가 서명 과정을 통해 암호화되므로, 데이터가 전송 중에 변경되면 서명이 무효화됩니다. 이는 거래의 무결성을 보장한다.
  2. 비역전성: 한 번 거래가 서명되고 네트워크에 의해 확인되면, 거래를 실행한 사람은 그 거래를 부인할 수 없다.

계속 읽다보면 알겠지만, 비트코인은 화폐의 개념보다는, 디지털 서명과 이전 기록들(체인들)의 연속체라는 개념으로 받아들이는 것이 좋을 것이다. 

 

일단 이정도만 알고, 다음 과정으로 넘어가보자.

출처:  https://bitcoin.org/files/bitcoin-paper/bitcoin_ko.pdf

 

각 화폐 소유자는 자신에게 그 화폐를 보낸 직 전 거래 명세(the previous transaction) 및 그 화폐를 받는 다음 소유자의 공개키 (the public key of the next owner)를 해시 처리한 값에 디지털 방식으로 서명하고 이를 화폐 끝에 추가해 다음 소유자에게 송금한다. 수취인(payee)은 그 서명을 검증해 화폐 소유권의 체인을 검증할 수 있다.

 

잠깐 개념정리

1. 공개키와 개인키

다소 어려운 문장들인 것 같다. 천천히 살펴보자. 우선 여기에 공개키, 개인키라는 용어가 등장하는데, 비트코인에서는 타원곡선 디지털 서명 알고리즘(ECDSA: Eliptic Curve Digital Signature Algorithm)을 이용하여 전자서명(디지털서명)을 수행한다. 이 때 사용되는 key들이 바로 위 그림에 등장하는 공개키와 개인키인 것이다.

공개키는 같은 네트워크의 모든 참여자들이 알 수 있도록 하는 키이며 (검증 등에 사용된다.)

개인키는 본인 이외에는 아무도 몰라야 하는 키이다.(서명 등에 활용된다. )

 

2. 해시

비트코인에서의 해시(Hash)는 암호학적 해시(Cryptographical Hash)라고도 부르는데, 암호학적으로 무결?한 해시라는 말인 것 같다. 기본만 말하자면 해시는 일방향함수라고 할 수 있다. 즉, 역함수가 존재하지 않는 함수인데, 랜덤한 길이의 입력값에 대해 항상 같은 길이의 결과를 출력하는 알고리즘이라고 볼 수 있겠다. 비트코인에서 사용하는 해시알고리즘인 SHA-256의 경우, 랜덤한 길이의 Input에 대해 256-bit 길이의 출력값을 뱉는다.

 

그림이 너무 위에 있어 다시 그림을 가져왔다. 

출처:  https://bitcoin.org/files/bitcoin-paper/bitcoin_ko.pdf

 

위 그림에서 왼쪽부터 user 1, 2, 3이라고 해보자.

user1은 user2에게 비트코인을 송금하는 트랜잭션을 수행하고 싶다.

이 경우, 위에서 설명한대로 직전 거래 명세(user1이 가지고 있는 비트코인 거래 data: 위 그림에서는 첫 번째 블록에 대한 데이터이다.) + 다음 소유자(수취인)의 공개키(user2의 공개키)를 SHA-256으로 해싱하여 그 값을 본인(user 1)의 개인키를 이용하여 ECDSA 알고리즘에 서명하여 다음 소유자(user2)에게 송금한다.

그리고, 다음 소유자인 user2는 user1의 공개키를 이용하여 검증할 수 있다.

 

굵게 표시한 부분이 이해가 좀 힘들 수 있다. 그런데... 이정도 설명이 최선인 듯 하여 두세번 더 읽어보며 이해해보기 바란다. 

 

문제 및 해결?

이 과정의 문제는 화폐 소유자 가운데 이중지불(double spending)하지 않은 한 사람을 수취인(user2)가 검증할 수 없다는 점이다. 이에 대한 기존 사회의 솔루션은 신뢰받는 중앙통제기관이나 조폐국을 세우고 모든 거래마다 이중지급 여부를 점검하는 것이다. 거래를 마칠 때마다 이 화폐는 조폐국으로 회수되어 새로운 화폐로 발행돼야하며, 조폐국에서 직접 발행된 화폐만이 이중지급되지 않았다는 신뢰를 받는다(여러 인증 수단을 통해서...)

 

이 솔루션을 적용할 때 문제는 마치 은행처럼 모든 거래가 거쳐가야 하는 조폐국 운영 회사 또는 기관에 전체 통화체계의 운명이 달려있다는 것이다.

 

따라서 비트코인에는 직전화폐(이전 거래내역) 소유자가 앞서 어떤 거래에도 서명하지 않았음을 수취인에게 알릴 수단이 필요하다. 이런 목적에 따라 비트코인은 가장 앞선(가장 먼저 실행된) 거래 하나만을 인정하고, 뒤따르는 동일한 출처의 이중지급 시도를 모두 무시하도록 하는 솔루션이 필요하다.

 

이중지급 거래가 없음을 확인할 유일한 방법은 모든 거래를 인식하는 것 뿐이다. 조폐국 기반 모델에서, 그들은 모든 거래를 인식했고(서버 등의 중앙 데이터베이스를 통해.) 어느 거래라 최초의 거래인지를 인식하고 결정했다.

 

신뢰받는 제삼자 없이 이 방식을 달성하려면, 거래는 1. 공개적으로 알려져야하고, 2. 참가자가 받은 거래 순서의 이력(코인 송금)에 합의하는 시스템이 필요하다.

 

또한, 수취인(user2)에게는 각 거래 당시 그게 최초로 받은 것이라고 노드 다수가 동의했다는 증명이 필요하다. 

 

이를 해결하는 것이 다음 챕터에서 다룰 타임스탬프 서버이다.

반응형
반응형

지난번 포스팅에서 다뤘었다. 

대체 PoW가 무엇인가!!! 작업증명이 그래서 뭔데!!!

자. 지금부터 한번 시작해보도록 하자. 라는 말을 쓰는 지금 시점에서, 나는 작업증명이 뭔지 모른다.

따라서, 이 글을 읽는 사람들에게 누구보다 모르는 사람의 관점에서 잘 설명할 수 있지 않을까? (라는 희망.)

 

1. 서론

블록체인 네트워크에서 비트코인은 블록체인에 새로운 블록을 추가하는 방식으로 조폐(화폐를 제조) 및 송금을 한다.

작업증명은 이 조폐 및 송금에서 사용되는 트랜잭션(Transaction: 거래)시에 이를 거래하는 방법이다. 

나카모토 사토시의 비트코인 백서에는 이런 말이 있었다(비트코인 백서 서론)

필요한 것은 신뢰 대신 암호학적 증명(cryptographic proof)에 기반해, 거래 의사가 있는 두 당사자가 신뢰받는 제삼 자를 찾지 않고 서로 직접 거래하게 하는 전자 결제 시스템이다.

 

즉, 거래를 중개하는 중개 플랫폼(은행 등)을 신뢰해야만 개인 간의 거래가 가능했던 이전의 방식이 아닌, 암호학적 증명에 기반하겠다는 말이다. 이는 곧, 사람, 시스템을 신뢰하는 데에는 어떻게든 오류가 생길 수 있으니, 절대적인 수학을 믿겠다는 말로 들린다. 

 

2008년 글로벌 금융위기 사태 직후, 금융위기 조사위원회(FCIC)는 525페이지 분량의 보고서에 이런 말이 있다.

"당시의 위기는 인간의 행동과 무대책의 결광지, 천재지변이나 컴퓨터 모델 문제가 아니다. 셰익스피어를 인용하자면 잘못은 저 별들이 아니라 우리에게 있다." 즉, 2009년의 나카모토 사토시는 인간에 의해 만들어진 금융시스템을 신뢰하기보다는, 보다 믿을 수 있는 수학적(암호학적 증명) 방법에 기댔다고 볼 수 있겠다.

 

그렇다면, PoW는 대체 뭘까?

 

 1. PoW(Proof of Work: 작업증명)

비트코인의 전체적인 구조를 살펴보자.

자, 시장이 처음 생기면 일단 어떻게 해야하는가?

1. 화폐를 만든다(찍는다)

2. 화폐를 시장에 공급한다.

3. 시장 구성원들이 화폐와 재화를 거래하며 화폐를 거래한다.

전체적으로 보면 이러한 구조가 될 것이다. 그런데, 각각의 단계를 어떠한 주체가 담당하는지 살펴보자.

 

1. 중앙은행에서 화폐를 발행한다.

2. 은행이 시장에 화폐를 공급한다.

3. 구성원들이 화폐를 거래한다(전자화폐의 경우, 이중지불문제와 보안을 위해 은행의 중개가 필요)

결국, 모든 과정에서 은행은 필수불가결의 요소이다.

하지만, 비트코인은 무엇인가?

바로 은행이 존재하지 않는, 은행을 신뢰하지 않는, 수학을 믿는 전자화폐이다. 이러한 과정들에서, 은행을 대신할 수 있는 요소로 등장하는 것이 바로 PoW, 작업증명이다.

 

작업증명이 비트코인에서 어떠한 기능을 하는지 가볍게 일단 한번 보자.

1. 채굴자는 화폐를 발행하고 이를 시장에 공급한다.(물론 바로 공급을 하지 않을 수 있겠지만.. 이들도 돈을 벌어야지)

2. 구성원들이 화폐를 거래한다.

 

해당 두 과정이 위의 세 과정을 압축했다고 볼 수 있다. 작업증명(PoW)는 이 두 과정 모두에서 작동한다.

 

우선, 조폐(1번)의 과정에서는, 화폐 발행인(채굴자)에게 일(채굴)을 했다는 것을 증명하도록 하여 화폐를 발행한다.

중앙집권화되지 않은 탈중앙화된 블록체인의 조폐 과정에서는 처음 만들어진 알고리즘 이외에는 누가 얼마의 화폐를 받을 지 결정할 수 있는 중앙 권력이 없기 때문에 모든 참여자들이 자동으로 동의할 수 있는 방법이 필요하다.

 

그렇다면, 채굴자는 어떤 문제를, 어떤 해시함수를 계산한다는 것일까? 간단하게 그림으로 한 번 알아보자.

비트코인의 작업증명 방식을 간단하게 그림으로 나타내보았다.

우선, 작업증명은 SHA-256과 같은 해시연산을 거쳐 이루어지는데, 

과정은 이러하다.

Hash(이전 블록의 해시값 || 생성할 블록의 트랜잭션 data || 임의의 Random한 Nonce) < 목표값

을 달성할 경우, 작업증명에 성공했다고 보는 것이다.

이와 관련하여 백서에서는 어떻게 이야기하는지 살펴보자.

우리는 타임스탬프 네트워크용으로 블록의 해시에 주어진 0 비트들을 모두 발견할 때까지 블록 안에 임시값을 증가시키는(incrementing a nonce) 것으로 작업증명을 구현했다.

 

이 말이 위에서 한 말과 같은 말로 받아들이면 될 것이다.

이게 대체 뭔 과정이길래 이정도만으로도 작업증명이 된다는 것일까?

답은 바로 Hash함수의 일방향적 특성에 있다.

 

수학적(암호학적)으로, 해시(Hash)함수는 일방향함수이기 때문에, 이를 역산하는 것이 무차별 대입(Brute Force)이외에는 방법이 없다는 점에 착안하여, 모든 채굴자가 해시함수를 계산해 가장 먼저 계산한 사람이 새로 발행되는 비트코인을 받아가는 구조이다.

 

또한 작업증명(PoW)는, 다수결의 체인의 대표성을 결정하는 문제도 해결한다. 만약, 1 IP당, 1표에 기반한 다수결로 검증을 진행하게 된다면, 한번에 수많은 IP를 할당할 수 있는 누군가(악의적인 공격자)에 의해 해당 네트워크 전체가 장악될 수 있다. 위에서 소개한 다수결은 기본적으로 CPU당 1표이다. 다수결의 결과는 가장 많은 자원이 사용된 작업증명들의 가장 긴 체인이 된다(즉, Hash Rate가 가장 높은 체인이 가장 긴 체인이 된다.) 정직한 노드들에 의해 다수의 CPU파워가 통제된다면, 가장 정직한 체인이 가장 빠르게 늘어나 다른 경쟁 체인들을 압도할 것이다.

 

또한, 과거 블록을 수정하려면 공격자는 해당 과거 블록의 값에 대한 작업증명을 재수행해야하고, ( Hash(해당 블록의 이전 블록 해시 값 + 변경하고자 하는 데이터 + Nonce) 를 다시 해야함.) 또한, 해당 블록 이후의 모든 타임스탬프의 블록에 대하여 모든 연산을 재수행해야 하는 문제가 생긴다. 또한, 이러한 작업을 가장 정직한 노드들의 작업 속도를 따라잡아야 그것이 가장 무결한 노드라는 것을 인정받을 수 있다. 

따라서, 비트코인은 그 구조상 블록의 수가 늘어날수록 블록의 위/변조가능성은 거의 0에 수렴하게 된다는 것을 알 수 있다.

 

또한, 실제로 발생한 문제이기도 하지만, 채굴자들은 자원을 아끼기 위해 기존 CPU의 수만배 파워를 내는 채굴기를 개발해내었다. 이러한 상황에서 채굴의 난이도는 상대적으로 쉬워질 수 밖에 없기 떄문에, 초기 알고리즘은 채굴의 난이도 (위 그림에서는 목표 값)를 시간당 평균 블록 수에 따른 평균 목표값을 조정하여 결정하도록 하였다.

즉, 블록들이 너무 빠르게 생성된다면 채굴 난이도는 높아진다는 것이다(목표값이 낮아진다는 것이다.)

 

3. 마치며...

이렇게 작업증명에 대한 기본적인 개념들을 다루어보았다.

다소 수학적인 내용이 등장할 것이라고 예상했었지만, 해시함수 이외에는(이것도 별 수학적으로 접근하지는 않았지만...) 그런 내용은 없었던 것 같다.

작업증명(Proof of Work) 이외에도 지분증명(Proof of Stake)라는 개념이 존재하는데, 이는 나아아중에 다뤄보도록 하겠다.

 

글 읽어주셔서 감사하옵니다^^

 

반응형

+ Recent posts